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Criminal activities are predominantly due to males, with females exhibiting a significantly lower 
involvement, especially in serious offenses. This pattern extends to organized crime, where females 
are often perceived as less tolerant to illegal practices. However, the roles of males and females within 
corruption networks are less understood. Here, we analyze data from political scandals in Brazil and 
Spain to shed light on gender differences in corruption networks. Our findings reveal that females 
constitute 10% and 20% of all agents in the Brazilian and Spanish corruption networks, respectively, 
with these proportions remaining stable over time and across different scandal sizes. Despite this 
disparity in representation, centrality measures are comparable between genders, except among 
highly central individuals, for which males are further overrepresented. Additionally, gender has no 
significant impact on network resilience, whether through random dismantling or targeted attacks 
on the largest component. Males are more likely to be involved in multiple scandals than females, 
and scandals predominantly involving females are rare, though these differences are explained by a 
null network model in which gender is randomly assigned while maintaining gender proportions. Our 
results further reveal that the underrepresentation of females partially explains gender homophily 
in network associations, although in the Spanish network, male-to-male connections exceed 
expectations derived from a null model.

Criminology literature consistently highlights substantial disparities in offending rates between males and 
females, with males being responsible for the majority of crimes1,2. This pattern extends to corruption-related 
offenses, where experimental research suggests that females typically demonstrate lower tolerance for dishonesty 
and exhibit more pro-social behavior3–5. Controlled experiments further indicate that, on average, females offer 
smaller bribes than males, and interactions exclusively between females tend to exhibit higher levels of honesty 
compared to those involving at least one male5,6. Additionally, studies report positive correlations between female 
participation in government and reduced perceptions of corruption in democratic countries4,7–9, suggesting 
that increased female representation in public offices and civil service also serves as a potential anti-corruption 
measure3,10,11. Research also indicates reductions in procurement-related corruption in French municipalities 
led by female mayors, although reelected female mayors exhibit no significant difference in corruption levels 
compared to their male counterparts12. This finding suggests that, over time, females in leadership positions may 
integrate into existing political networks or establish new ones that are not necessarily less corrupt12,13.

Despite numerous recent studies on the dynamics and inner workings of political corruption networks14–17, 
organized crime18,19, mafia groups20,21, and other offenses committed through associations of individuals22–25, 
the role of gender in such networked crimes, particularly political corruption, remains relatively underexplored. 
A notable exception is the work by Smith26, which examined gender disparities in Chicago’s organized crime 
before and after the alcohol prohibition of 1920, revealing that the prohibition expanded opportunities for 
males while largely excluding females. This emerging research field holds significant potential for advancing 
academic understanding and equipping security forces with better tools for decision-making, particularly when 
enhanced by collaboration between law enforcement and academia. For instance, an empirical investigation 
into criminal networks assessed the impact of law enforcement interventions on the structure and functioning 
of a dark web pedophile network22, showing that the resulting dismantling resembled random node removal 
and was less effective than more optimized removal strategies. Other studies27,28 showed that leveraging 
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criminal network structures in combination with machine learning approaches yields impressive accuracy in 
recovering missing criminal partnerships, distinguishing types of criminal associations, predicting money flow 
among criminals, and even anticipating future partnerships and re-offending behavior. Recent studies analyzing 
security intelligence data29,30 proposed a novel protocol for network disruption through key-agent identification, 
showing its effectiveness in enabling law enforcement to identify and assess criminal activity. Another recent 
study on a dark web pedophile ring31 used network tools to analyze user behavior, revealing crucial insights into 
temporal engagement patterns, content preferences, and user clusters.

Research on networked crime has thus demonstrated that the structure of criminal networks is highly 
informative about various nuances of criminal activity32. Therefore, it is critical to analyze possible disparities in 
the roles occupied by males and females within these networks. This issue parallels other gender-based analyses 
in fields such as education33,34, scientific careers35,36, representation in literary works37, membership in artistic 
and scientific academies38–40, and online biographies41, to name just a few, and may offer valuable perspectives 
on gender differences in networked crime. Here, we analyze data from political corruption scandals in Brazil14 
and Spain42, spanning from the 1990s to the 2010s, to construct corruption networks in which agents are 
connected when they collaborate in the same scandal. Gender labels are assigned to each network node based on 
the identification of individual names, allowing us to examine the structural roles of males and females within 
these networks. Consistent with the criminology literature, we find that males constitute the vast majority of 
corrupt agents, with females representing only 10% of nodes in the Brazilian network and 20% of nodes in the 
Spanish network—fractions that are at least partly explained by very low participation in politics, high-ranking 
positions in the private sector, and other leadership roles38,43–45.

Based on this disparity, we adapt a model capable of reproducing several properties of these corruption 
networks42 to simulate networks where gender is randomly assigned to nodes while preserving the observed 
male-to-female ratios. These in silico networks serve as null models for quantifying the significance of differences 
in network properties and determining whether these differences can be attributed solely to the disparity in 
gender representation. We examine the role of gender in centrality measures, network resilience, reoffending 
rates, and collaboration patterns, finding no significant gender differences overall, or that existing differences 
are at least partially explained by our null network model. The only exceptions refer to an overrepresentation 
of males among highly central individuals and a higher degree of gender homophily in collaboration patterns 
observed in the Spanish network, which cannot be accounted for by the null model. Our findings thus indicate 
a markedly low prevalence of females in political corruption cases; however, once this disparity is taken into 
account, the structural roles of these networked criminals appear to be largely invariant with respect to gender. 
Interestingly, these findings align with existing research on gender differences in scientific careers, where female 
and male faculties exhibit similar numbers of co-authors35, comparable annual productivity36, and equivalent 
career-wise impact36, once total publication numbers and career lengths are considered.

In what follows, we present these results in detail, beginning with a description of our data and the 
construction of the corruption networks, with an emphasis on the disparity in female participation. We then 
introduce our null network model, followed by an analysis of gender differences in centrality measures and 
network dismantling. Next, we explore gender differences in collaboration patterns within these networks. 
Finally, we conclude by contextualizing and summarizing our findings.

Results
Data
We begin by presenting the datasets used in our investigation, which encompass well-documented political 
corruption scandals in Brazil14 and Spain42, spanning from the late 1980s to the late 2010s. These datasets were 
compiled from widely circulated magazines and newspapers in both countries and subsequently organized by 
the authors of Ref.14 for the Brazilian cases, and by a non-profit organization for the Spanish cases46. The data 
comprise the names of all individuals involved and the year of occurrence for 65 scandals in Brazil and 437 
scandals in Spain. Using the list of involved individuals, we manually assign gender to each person based on 
their names, complemented by web searches to confirm the information. We then construct a complex network 
representation of these scandals where nodes represent individuals and edges connect pairs who partnered in at 
least one scandal. In both networks, nodes represent politicians, public servants, or private sector actors engaged 
in illegal practices that compromise the public good in return for monetary reward or the accrual of greater 
influence, access, or power. For the Spanish network, we further exclude isolated scandals involving a single 
individual. This process resulted in two corruption networks comprising 404 individuals in Brazil and 2695 in 
Spain.

Gender prevalence
The Brazilian and Spanish networks are depicted in Fig. 1A and B, with nodes color-coded by gender (purple for 
males and green for females). These visualizations clearly show that female agents represent a small fraction of 
the nodes in both networks. Specifically, females account for 10% and 20% of the individuals in the Brazilian and 
Spanish networks, respectively. These proportions remain similar when considering only the largest connected 
component of the networks, where females constitute 9.4% and 20.7% of the Brazilian and Spanish networks, 
respectively. Moreover, Fig. 1C and D shows that the average prevalence of gender does not change across the 
different levels of connectivity obtained from the k-core decomposition47, which progressively removes nodes 
with fewer than k connections, creating a hierarchical structure of nodes, from the 1-core (the entire set of nodes) 
to higher-order cores such as the 2-core (nodes with at least two connections), and so on. We also examine the 
evolution of female participation as the networks expand over time due to the addition of new corruption cases. 
Figure 1E and F show that, following a brief initial period with no females in the Brazilian network and a slightly 
higher fraction in the Spanish network, the proportion of females stabilizes and remains steady over time in both 
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Fig. 1.  Gender disparities in participation within corruption networks. Panels (A) and (B) present 
visualizations of corruption networks in Brazil and Spain. Nodes represent male (purple) and female (green) 
agents involved in corruption scandals, and connections among them indicate partnerships in at least one 
scandal. Females comprise 10% of agents in Brazil and 20% in Spain. Panels (C) and (D) show the proportions 
of males (purple line) and females (green line) across various k-core levels (defined as sets of nodes with at 
least k connections) in the Brazilian and Spanish networks, respectively. In both panels, horizontal dashed 
lines indicate the average prevalence of males and females within each network. Panels (E) and (F) depict 
the evolution of the proportion of males (purple lines) and females (green lines) as the corruption networks 
in Brazil and Spain expand through the inclusion of new scandals. Insets show the average number of male 
(purple markers) and female (green markers) agents as a function of the scandal size (number of involved 
individuals). Dashed lines represent linear relationships in which the average number of agents is proportional 
to scandal size, with proportionality coefficients corresponding to the overall gender prevalence in each 
network.
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networks. Additionally, we analyze whether these proportions vary with the number of individuals involved in 
political scandals by estimating the average number of males and females as a function of scandal size. The insets 
of Fig. 1E and F show that the average numbers of male and female individuals scale proportionally with scandal 
size, with the proportionality rates corresponding to the overall gender incidence in the networks. These findings 
confirm that females are underrepresented in corruption networks and that this underrepresentation remains 
stable across both the hierarchical structures of connectivity and different scandal sizes.

Network centrality
In addition to examining gender prevalence within these networks, we assess whether males and females occupy 
distinct roles and functions by analyzing the degree (k) and betweenness (B) centrality measures48. We estimate 
the average values of these measures by grouping nodes according to gender, further distinguishing whether 
individuals are recidivists. Recidivists, or re-offenders, defined as individuals involved in multiple corruption 
scandals, play a crucial role in shaping the structure and dynamics of corruption networks by linking separate 
scandals42. Figure  2A–D present the average values of both centrality measures (circle markers with error 
bars) alongside their distributions (shown as violin plots) separated by gender (purple for males and green 
for females). On average, male individuals have 18 ± 1 partners (with ± denoting the standard error of the 
mean), while females show a slightly lower average of 17 ± 2 partners in the Brazilian network. A similar trend 
is observed in the Spanish network, where males average 21 ± 1 partners, compared to 19 ± 1 for females. 
Among recidivists, males also exhibit a higher average number of partners than females in both networks, with 
values of 33 ± 3 vs. 19 ± 10 and 38 ± 2 vs. 34 ± 4 for recidivist males and females in the Brazilian and Spanish 
networks, respectively. For betweenness centrality, we calculate the average values only for recidivists, as non-
recidivists have null betweenness given they do not intermediate any shortest paths. The average betweenness of 
female recidivists [(1.39 ± 1.26) × 10−2 and (2.87 ± 1.65) × 10−3] is also slightly smaller than that of males 
[(2.16 ± 0.38) × 10−2 and (2.87 ± 0.50) × 10−3] in both networks (Brazilian and Spanish).

The analysis of centrality measures suggests that, on average, males not only have more partners but also 
intermediate more shortest paths within these networks. To systematically test these hypotheses, we employ 
bootstrap tests for the equality of means49, finding that none of the observed gender differences in the average 
values of either centrality measure are statistically significant at the 95% confidence level (see Supplementary 
Table S1 for all p-values). Additionally, Mann-Whitney tests for equality in distribution50 do not allow rejection 
of the null hypothesis that the distributions of these centrality measures are equal between the genders at the 
same confidence level (see Supplementary Table S2 for all p-values).

To further corroborate these results, we adapt a model capable of replicating several properties of corruption 
networks42 to generate synthetic networks where gender is randomly assigned to nodes, maintaining the 
observed proportions of males and females in each network. As detailed in Methods, the model begins with 
an empty network and incrementally adds fully connected graphs, simulating the emergence of new scandals. 
Nodes within these subgraphs have a probability of being assigned as re-offenders (the recidivism rate), and 

Fig. 2.  Network centralities of males and females in corruption networks. Panels (A) and (B) show the degree 
centrality k of males (purple) and females (green), with nodes further categorized into all agents and recidivist 
agents for the Brazilian and Spanish networks. Similarly, panels (C) and (D) present the betweenness centrality 
B of recidivist agents. Error bars represent the average values of the centrality measures along with their 
standard errors of the mean. Violin plots illustrate the data distributions, with individual observations depicted 
as small dots. Panels (E)–(J) compare the difference between the number of males and females identified as 
outliers based on degree centrality (δk  and δr

k  for recidivists) and betweenness centrality (δr
B) for the Brazilian 

(first row) and Spanish networks (second row). Vertical lines indicate the empirical differences observed in 
each network, while the filled curves correspond to the complementary cumulative distribution functions 
[CCDFs, F (δ), with δ ∈ (δk, δr

k, δr
B)] of the same differences estimated from the null network model. Legends 

display the probability of observing the same or a large excess of male outliers in the null model.
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when a re-offender appears, her or his new partners are connected together to that re-offender in the network. 
This process continues until the number of scandals in the synthetic networks matches those observed in the 
empirical networks. Additionally, following42, we fine-tune the model parameters to best replicate the properties 
of each empirical network. Once the synthetic networks are generated, gender is randomly assigned to each 
node according to the empirical proportions of males and females (10% in the Brazilian and 20% in the Spanish 
networks). This method thus generates a null model in which gender is not associated with any structural 
property of the corruption networks, reflecting only the empirical disparity in gender representation. Indeed, 
simulations of this model mimic the empirical behavior and produce networks where degree and betweenness 
centrality measures display the same average values and distributions for both genders (Supplementary Figure 
S1).

Yet, the results of Fig.  2A–D indicate that the centrality distributions are highly skewed, with certain 
individuals exhibiting centrality values substantially higher than the average. This prompts the question of 
whether male and female agents are equally represented among these highly central individuals. To investigate 
this possibility, we calculate the difference between the numbers of males and females identified as outliers 
based on degree (δk  and δr

k  for recidivists) and betweenness (δr
B , only for recidivists) centralities. Outliers are 

defined using Tukey’s fences rule51, where any observation exceeding the third quartile by more than 1.5 times 
the interquartile range is classified as an outlier. In the Brazilian network, we identify an excess of 15 males 
among degree outliers (δk = 15), no difference among recidivists outliers in degree (δr

k = 0), and an excess 
of 2 males among outliers in betweenness centrality (δr

B = 2). In the Spanish network, there is an excess of 
115 males among degree outliers (δk = 115), an excess of 6 males among recidivist outliers in degree (δr

k = 6
), and an excess of 27 males among betweenness outliers (δr

B = 27). These results suggest that males constitute 
the majority of highly central individuals; however, part of this male overrepresentation may be due to the 
significantly higher proportion of males in these corruption networks.

To test this hypothesis, we generate one thousand simulated networks from our null model for each country, 
evaluating the differences in the numbers of males and females identified as outliers. We then calculate the 
complementary cumulative probability distributions of these differences [F (δ), where δ ∈ (δk, δr

k, δr
B)], 

as shown in Fig.  2E–J. Most of the distribution masses lie in the positive range, confirming that the higher 
prevalence of males is indeed partially responsible for the emergence of more male outliers. These distributions 
further allow us to quantify how rare the empirical differences between the number of male and female outliers 
are, analogously to a p-value in hypothesis tests. In the Brazilian network, the empirical differences (represented 
as vertical lines in Fig. 2E, G, and I) all have higher probabilities of randomly occurring in our null model, 
suggesting that they can be fully explained by the higher proportion of males in the network. Similarly, in the 
Spanish network, the excess of male outliers in degree for recidivists has a 27% probability of occurring randomly 
(vertical line in Fig. 2H). However, for degree and betweenness centrality outliers (vertical lines in Fig. 2F and 
J), the probabilities of observing the empirical differences in our null models are significantly lower. Specifically, 
the probability of observing 115 or more male degree outliers is estimated at 6%, and the probability of finding 
27 or more male betweenness outliers is 1%. Although the 6% probability for degree outliers falls within the 
95% confidence level, these findings support, at least partially, the hypothesis that males are overrepresented 
among highly connected individuals in the Spanish network, even beyond what numerical differences in gender 
prevalence would suggest. We also note that the Brazilian network is significantly smaller than the Spanish 
network, which may explain the lack of significance as random fluctuations become more pronounced in smaller 
systems.

Network resilience
We also examine the potential influence of gender on the resilience of the Brazilian and Spanish corruption 
networks by performing random dismantling and targeted attacks on their largest components. For random 
dismantling, we consider three distinct strategies: randomly removing all females, randomly removing the same 
number of males, and randomly removing the same number of agents regardless of gender. Each strategy is 
replicated 1000 times per network, and the attack’s impact is assessed by calculating the average fraction of the 
largest connected component S as a function of the number of removed nodes n, as depicted in Fig. 3A for the 
Brazilian network and Fig. 3B for the Spanish network. In both cases, the average behavior of S when removing 
only males (purple circles) or when removing nodes regardless of gender is similar due to the significantly 
higher prevalence of males. Interestingly, the random removal of females produces different results between the 
two networks. In the Brazilian network, removing all females causes 3% less damage to the giant component 
than removing the same number of males or nodes regardless of gender. In contrast, in the Spanish network, 
removing all females causes 16% more damage to the giant component than the two other strategies. To verify 
the significance of these findings, we compare the effects of randomly removing females with those of randomly 
removing nodes regardless of gender in networks generated from our null model, calculating the differences 
in the final fraction of the largest component (δS), and their distributions across 1000 simulations. Figure 3C 
and D show that observing 3% less damage to the giant component when removing only females in the giant 
component of the Brazilian network or the 16% more damage caused by the removal of all females in the 
giant component of the Spanish network falls within the 95% confidence intervals derived from our null model. 
Therefore, there is no significant difference between randomly removing only females and only males to the 
resilience of both corruption networks. The same conclusions are obtained when evaluating the attack damages 
by calculating the average value of the inverse of the shortest path lengths in the giant components of these 
networks (Supplementary Figure S2).

In addition to random dismantling, we further consider targeted attacks using the deterministic dismantling 
algorithm proposed by Ren et al.52, addressing the generalized network dismantling (GND) problem. This 
approach aims to identify an optimal set of nodes whose removal (subject to cost constraints) reduces the largest 
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connected component to a specified maximum size. Since the algorithm of Ren et al. relies on a recurrent spectral 
partitioning approach, it offers complementary insights into the structural roles of males and females that may 
not be captured by the random dismantling and centrality analysis. Figure 3E and F depict the fraction of the 
largest components of the Brazilian and Spanish networks as nodes selected by the algorithm are sequentially 
removed (up to the total number of females initially present) in an optimal order designed to cause maximum 
disruption. In these figures, the removal of male nodes is indicated by purple circles, while the removal of female 
nodes is shown by green crosses. As expected, these targeted attacks inflict significantly greater damage on the 
giant components of both networks compared to random dismantling strategies. Regarding gender differences, 
in the Brazilian network, 4 females out of the 29 initially present are removed, corresponding to 13.8%, a fraction 
slightly higher than the overall female prevalence in the giant component (9.4%). Similarly, in the Spanish 
network, the GND algorithm selects 50 females for removal out of the 225 initially present, yielding a fraction 
slightly higher than the overall female prevalence in the giant component (22.2% vs. 20.7%). Once again, we 
use our null model to assess the significance of these differences by estimating the probability distributions of 
observing a fraction xGND of females among the nodes selected for removal across 1000 simulations for each 
corruption network. These distributions are shown in Fig. 3G and H, indicating that both empirical differences 
are fully accounted for by our null model. The same results are obtained when considering targeted network 
attacks based on degree and betweenness centralities, as well as when quantifying damage using the average value 
of the inverse of the shortest path lengths (Supplementary Figure S3). Therefore, as with random dismantling, 
gender does not play a significant role in targeted network attacks.

Collaboration patterns
In our final analysis, we examine collaboration patterns of both genders in corruption networks. Results so far 
indicate that females and males display a similar number of collaborators, including among recidivists. However, 
males are overrepresented among highly central individuals in the Spanish network. This prompts the question 
of whether there are differences in the recidivism rates (defined here as the proportion of individuals involved in 
multiple corruption cases) between males and females. In the Brazilian network, 14.1% of males and 11.9% of 
females participate in more than one corruption scandal, while in the Spanish network, 9.04% of males and 7.27% 
of females are recidivists. Thus, the recidivism rate of males is ≈ 2% higher than that of females in both networks. 
Once again, we assess the significance of these differences by simulating 1000 networks using our null model with 

Fig. 3.  Network resilience under the removal of male and female agents. Fraction of the largest connected 
component S of the (A) Brazilian and (B) Spanish networks as a function of the number of removed nodes 
n following three random dismantling strategies: randomly removing all females (green crosses), randomly 
removing the same number of males (purple circles), and randomly removing the same number of agents 
regardless of gender (dashed lines). The curves represent the average values of S calculated from 1000 
independent realizations of each dismantling strategy. Probability distribution functions [PDFs, f(δS)] 
comparing the differences δS  in the final fraction of the largest component after randomly removing females 
and randomly removing nodes regardless of gender in 1000 simulations of networks generated from our 
null model for the (C) Brazilian and (D) Spanish networks. Fraction of the largest connected component 
S of the (E) Brazilian and (F) Spanish networks as a function of the number of removed nodes n following 
the generalized network dismantling (GND) algorithm proposed by Ren et al.52. Green crosses indicate the 
removal of female agents, and purple circles represent the removal of male agents. The GND algorithm is 
deterministic with nodes sequentially removed (up to the total number of females initially present in the 
giant component of each network) in an optimal order designed to cause maximum disruption. Probability 
distribution functions [PDFs, f(xGND)] of observing a fraction xGND of female agents among the nodes 
selected for removal by the GND algorithm across 1000 simulations of our null model for the (G) Brazilian and 
(H) Spanish corruption networks. The empirical fractions are depicted by vertical lines, with shaded regions 
corresponding to 95% confidence intervals estimated from the null model.
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parameters tailored to the data of each country. We then calculate the differences δr in the recidivism rate between 
genders and estimate their probability distributions. Figure 4A and B display these distributions for Brazilian and 
Spanish simulated networks, where shaded regions represent 95% confidence intervals for δr, and the vertical lines 
indicate the empirical differences. As the empirical differences fall within the confidence intervals, they are not 
statistically significant, suggesting no clear evidence that males have higher recidivism rates than females.

We also explore the cumulative distributions F (ϕ) of the fractions ϕ of females involved in each corruption 
scandal, as depicted in Fig. 4C for Brazilian scandals and 4D for the Spanish scandals (green lines). These figures 
show that scandals predominantly involving females (ϕ > 0.5) are rare (3% and 4% in Brazilian and Spanish data, 
respectively); however, the average values of ϕ (ϕ̄BR = 0.11 for Brazilian and ϕ̄ES = 0.19 for Spanish scandals) 
closely align with the overall proportions of females in both networks (0.10 and 0.20, respectively). Using the 
Mann-Whitney test50, we compare these empirical distributions with those derived from 1000 simulations of 
our null model (gray curves in Fig. 4C and D). The test fails to reject the null hypothesis of equality between the 
simulated and empirical distributions for the Brazilian data in 98% of the comparisons (p-value < 0.05 in only 
2% of the comparisons, Supplementary Figure S4), and in the Spanish data, the hypothesis is not rejected in 61% 
of the comparisons (p-value < 0.05 in 39% of the comparisons, Supplementary Figure S4). Furthermore, the 
average values of ϕ and F (ϕ) across all simulations closely match their empirical counterparts, with only small 
systematic deviations observed in the Spanish scandals. While the prevalence of females in Spanish scandals 
appears marginally higher than that predicted by the null model, the fraction of scandals predominantly 
involving females (ϕ > 0.5) is not significantly different from the simulated results (Supplementary Figure S5). 
These findings confirm that scandals predominantly involving females are rare, and this underrepresentation 
can be fully explained by their overall lower representation in the networks.

Still analyzing collaboration patterns, we calculate the percentage of links exclusively between males, between 
females and males, and exclusively between females to quantify gender homophily within the corruption networks. 
As before, we use 1000 simulated replicas of the Brazilian and Spanish networks generated from our null model as 
baselines for comparisons with empirical values. The colored bars in Fig. 4E and F show the empirical proportions of 
each link type, while the grey bars represent the null model simulations, with error bars indicating 95% confidence 

Fig. 4.  Collaboration patterns of males and females within corruption networks. Probability distribution 
functions [PDFs, f(δr)] of differences in recidivism rates δr between males and females estimated from 
simulation of our null model with parameters tailored to the (A) Brazilian and (B) Spanish data. Vertical lines 
indicate the empirical differences calculated for the Brazilian (δBR

r = 0.022) and Spanish (δES
r = 0.018) 

networks. The shaded regions represent 95% confidence intervals estimated from the simulated data for 
each country. Complementary cumulative distribution functions [CCDFs, F (ϕ)] of the fraction ϕ of females 
involved in corruption scandals in the (C) Brazilian and (D) Spanish data. Green curves represent the empirical 
distributions, gray curves show the distributions estimated from each of the 1000 simulations of the null model 
for each country, and the black curves correspond to the average behavior of the simulations. Green vertical lines 
indicate the empirical average fractions (ϕ̄BR = 0.11 for Brazilian and ϕ̄ES = 0.19 for Spanish scandals), while 
black vertical lines show the corresponding averages calculated from all simulations. Percentage of male-male, 
female-male, and female-female links in the (E) Brazilian and (F) Spanish corruption networks on a logarithmic 
scale. Colored bars indicate the empirical percentages, while gray bars show the averages obtained from 1000 
simulations of the null model for each country. Error bars represent the 95% confidence intervals calculated from 
the null model simulations, with asterisks above the bars indicating statistically significant differences.
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intervals. In the Brazilian network, the proportions of male-male, female-male, and female-female links are 81.2%, 
17.9%, and 0.9%, respectively. These empirical percentages closely align with the average values obtained from 
the null model and do not significantly differ from them (Supplementary Figures S6A-S6C), suggesting that the 
observed degree of homophily in the Brazilian network is fully explained by the null model. In contrast, in the 
Spanish network, 66.3% of links are exclusively between males, 28.8% connect females and males, and 4.9% 
are exclusively between females. These percentages deviate more substantially from the null model averages of 
63.3%, 32.5%, and 4.2% for male-male, female-male, and female-female connections, respectively. The surplus 
of male-male links and the deficit of female-male connections are statistically significant, as the empirical values 
lie outside the 95% confidence intervals (Supplementary Figures S6D and S6E). In turn, although the excess of 
female-female links is not strictly statistically significant, the empirical value (4.9%) closely approaches the upper 
limit of the 95% confidence interval (3.4% to 4.9%, Supplementary Figure S6F). Thus, our data provide evidence 
for the existence of a higher degree of gender homophily in the Spanish network that cannot be fully accounted for 
by the null model.

Discussion and conclusions
Corruption, broadly defined as “the abuse of entrusted power for private benefits or gains,”16 is a 
pervasive criminal behavior that remains highly resistant to control53,54. The vast sums of money involved 
in corruption cases, alongside the high costs of efforts to combat this crime, have driven much of the 
literature on corruption and organized crime toward economic and sociological analyses53. In parallel, the 
rise of network science 48,55 has recently fostered a growing body of research exploring the dynamics and 
structure of networked crimes14,16–19,22,23,27–29,31. Our study contributes to this growing field by addressing 
the underexplored role of gender in corruption networks, thus complementing the extensive literature 
documenting the significantly higher offending rates of males across various crime types1–5, as well as the 
suggested lower tolerance of females for dishonest and corrupt behavior3–6,10–12.

Our findings align with the criminology literature, demonstrating that males constitute the vast majority 
of individuals in political corruption networks, with females representing only 10% of nodes in the Brazilian 
network and 20% of nodes in the Spanish network. Moreover, we observed that the proportion of females involved 
in corruption scandals remained stable over time, across hierarchical connectivity structures, and irrespective 
of scandal size. Given that most individuals involved in corruption scandals are politicians and high-ranking 
employees in both public and private sectors, the underrepresentation of female agents may, at least in part, be 
attributable to their comparatively low participation in politics, high-ranking positions, and other leadership 
roles38,43–45. Indeed, during the same period covered by our data, females constituted, on average, 10.6% and 
26.4% of parliamentarians in the upper and lower chambers in Brazil and Spain56,57, respectively—proportions 
that parallel the female participation in our corruption networks. However, corruption network participants are 
not exclusively political representatives and the complete networks capturing all relevant interactions between 
politics and other sectors remain inaccessible, leaving the associated gender distributions unknown. Moreover, 
politicians are not ordinary individuals45, and political corruption represents a highly specialized form of 
criminality. Thus, selection bias associated with the occupation of political positions, as well as bias related to 
the emergence of individuals involved in illicit activities, may also influence the observed gender differences in 
corruption network participation. Accordingly, it remains a challenge for future studies to determine whether 
disparities in political participation and leadership roles fully account for the underrepresentation observed.

Interestingly, the level of female participation in these corruption networks is somewhat comparable to that 
observed in Chicago organized crime prior to alcohol prohibition in 1920, where females constituted 18% of 
networked individuals26. However, following prohibition, female representation dropped to just 4%, despite the 
network nearly tripling in size26. A similarly low level of female participation was observed in organized crime 
groups involved in serious offenses in a region of England, where females accounted for 6% of individuals58. In 
the case of Chicago, Smith26 argued that the exogenous shock of alcohol prohibition increased profits, violence, 
and risk, leading to new organizational structures that concentrated power and opportunities among males, 
largely excluding females from criminal activities. While our findings do not indicate significant variations in 
female involvement across both corruption networks, the potential impact of similar exogenous shocks—such 
as anti-corruption measures or large-scale police operations—on these networks warrants further investigation 
in future research.

To explore how this gender disparity translates into differences in network properties of males and females, 
we considered a model capable of replicating several aspects of corruption networks, generating simulated 
networks that reflect the observed gender imbalance but without tying gender to any specific network property. 
These simulations thus served as null models, providing baselines for statistical comparisons and revealing 
differences that cannot be attributed solely to the disparity in gender representation. Despite the substantial 
imbalance in gender representation, our analysis found that females and males exhibit similar averages and 
distributions in terms of degree and betweenness centralities. However, the number of males emerging as 
outliers for both centrality measures was significantly greater than that of females, with these differences not 
being fully explained by the female underrepresentation in our null models, particularly in the Spanish network. 
The lower occurrence of females among centrality outliers also aligns with the absence of females in the criminal 
elite during the alcohol prohibition era in Chicago26. Gender also did not significantly affect the resilience of 
corruption networks, whether through random dismantling or targeted attacks on their largest components. 
Specifically, we found that randomly removing only females, only males, or removing agents irrespective of 
gender caused similar levels of damage to these networks. Similarly, the fraction of females selected for removal 
by a deterministic algorithm addressing the generalized network dismantling problem52 was indistinguishable 
from the values obtained in the null model simulations.
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Regarding collaboration patterns, our findings indicated that males are more likely than females to be 
involved in multiple scandals and that the proportion of scandals predominantly formed by females is small 
in both networks. However, these differences are fully explained by the overall lower female representation, as 
captured by the null network model. Although our simulations fully explain the gap in recidivism rates, it is 
noteworthy that female politicians are often subjected to higher levels of voter accountability—given the general 
perception of females as more honest than males5,6—which may further disincentivize their involvement in 
multiple scandals13,59. We further investigated gender homophily within the corruption networks by estimating 
the percentage of links exclusively between males, between females and males, and exclusively between females, 
both from the empirical networks and their null model simulations. In both networks, male-male connections 
accounted for the vast majority of network connections, followed by female-male connections, while exclusively 
female connections were the least common. In the Brazilian network, the degree of homophily quantified by 
the prevalence of these three connection types was fully explained by the null model. Conversely, in the Spanish 
network, male-male connections exceeded and male-female connections fell below null model expectations, 
indicating that the degree of gender homophily is not solely explained by female underrepresentation. This 
pattern aligns with previous research on organized crime, where homophilic tendencies have been observed 
in relation to ethnicity60, age58,61, and gender26,58,61. Specifically, Campana and Verese identified gender as a 
determinant of membership in criminal groups, with individuals of the same gender more likely to belong to 
the same group58. Similarly, Smith26 observed mild assortative mixing by gender, where females tend to connect 
with males, while males predominantly connect with other males in the context of organized crime in Chicago 
during the alcohol prohibition.

Taken together, our findings indicate that the participation of female agents in political corruption is 
markedly low; however, once this disparity is accounted for, the structural roles of these networked criminals 
appear largely invariant with respect to gender, with notable exceptions concerning the presence of highly 
central individuals and the degree of homophily in criminal associations. Although not a perfect analogy, these 
findings align with existing research on gender differences in scientific careers, where female and male faculties 
exhibit similar numbers of co-authors35, comparable annual productivity36, and equivalent career-wise impact36, 
once total publication numbers and career lengths are considered.

Our research is not without limitations. A primary challenge lies in the difficulty of acquiring reliable data on 
corruption networks and organized crime, due to legal confidentiality or the covert nature of criminal activities. 
As with many datasets of this type, corruption data remains inherently incomplete, as it is challenging to ensure 
that all individuals involved in corruption scandals are identified through investigations. The temporal span of 
our networks (from the late 1980s to the late 2010s) may also influence our results. Future research using more 
recent data, in light of the rapid developments in female representation and evolving societal norms regarding 
gender equality, may eventually reveal emerging trends despite the observed stability in gender prevalence. 
Furthermore, the limited size of our corruption networks may have constrained the detection of statistically 
significant differences, particularly in the Brazilian context, where random fluctuations in the null model were 
more pronounced. Moreover, our conclusions are based on political corruption within two Western nations, 
and although these countries differ in political systems and development levels, future research should expand 
to other regions to assess the generalizability of our findings. Another limitation is the exclusion of nonbinary 
identities from our analysis; although such data are undoubtedly challenging to collect, future work should 
strive to incorporate these identities for a more comprehensive understanding of gender roles in corruption 
networks. Additional studies could also explore the temporal dynamics of centrality and collaboration within 
corruption networks, considering their growth and evolution as well as the role of gender in the emergence 
of isolated scandals and individuals. Equally important is the examination of other networked crimes, such 
as money laundering, illicit trade, and cybercrime. Despite these constraints, we believe this work improves 
our understanding of gender disparities and commonalities in the roles individuals occupy within corruption 
networks.

Methods
We adapt the corruption network model proposed in Ref.42 to generate a null model in which gender labels 
are randomly assigned based on the empirical gender proportions. The original model was designed to 
replicate several characteristics observed in corruption networks, including exponential degree distributions, 
high clustering coefficients, and the small-world property. The model begins with an empty synthetic network 
that grows by iteratively adding complete graphs representing corruption scandals. To mimic empirical 
behavior, the size s (number of people involved) in these scandals is drawn from the exponential distribution, 
P (s) = 1

sc
e−s/sc , where sc is a parameter defining the typical size of corruption scandals. Additionally, to 

further replicate empirical patterns, the model assumes that the number of recidivist agents (R) increases linearly 
with the total number of nodes (N) according to R = αN + β, where α controls the recidivism rate and β 
determines the minimal number of individuals in the network required to observe the first recidivists. Each time 
new recidivists are introduced, the model randomly selects individuals from the network to become recidivists 
and incorporates them into the next scandal added to the network. Furthermore, individuals who are already 
recidivists are selected with a small probability prr . This process continues until the number of corruption 
scandals in the simulated networks matches that observed in the empirical networks. Once the network is 
complete, genders are randomly assigned to all nodes based on a Bernoulli distribution, where the probability 
of a node being female is pf .

Following Ref.42, we set the model parameters to best reproduce the empirical properties of the corruption 
networks. For the Brazilian network, we use α = 0.14, β = −11.5, sc = 7.51, and pf = 0.1. For the Spanish 
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network, we set α = 0.09, β = −3.47, sc = 7.33, and pf = 0.2. We further consider prr = 0.025 for both 
networks.

Data availability
The data used in the current study are available from Refs.14,42 and the corresponding author upon reasonable 
request.

Received: 20 October 2024; Accepted: 10 April 2025

References
	 1.	 Bennett, S., Farrington, D. P. & Huesmann, L. R. Explaining gender differences in crime and violence: The importance of social 

cognitive skills. Aggress. Violent Behav. 10, 263–288. https://doi.org/10.1016/j.avb.2004.07.001 (2005).
	 2.	 Kruttschnitt, C. Gender and crime. Ann. Rev. Sociol. 39, 291–308. https://doi.org/10.1146/annurev-soc-071312-145605 (2013).
	 3.	 Swamy, A., Knack, S., Lee, Y. & Azfar, O. Gender and corruption. J. Dev. Econ. 64, 25–55. ​h​t​t​p​s​:​/​/​d​o​i​.​o​r​g​/​1​0​.​1​0​1​6​/​S​0​3​0​4​-​3​8​7​8​(​0​0​)​

0​0​1​2​3​-​1​​​​ (2001).
	 4.	 Dollar, D., Fisman, R. & Gatti, R. Are women really the “fairer’’ sex? Corruption and women in government. J. Econ. Behav. Organ. 

46, 423–429. https://doi.org/10.1016/S0167-2681(01)00169-X (2001).
	 5.	 Rivas, M. F. An experiment on corruption and gender. Bull. Econ. Res. 65, 10–42. https://doi.org/10.1111/j.1467-8586.2012.00450.x 

(2013).
	 6.	 Chaudhuri, A. Research in Experimental Economics, chap. Gender and Corruption: A Survey of the Experimental Evidence, 13–49 

(Emerald Group Publishing Limited, 2012).
	 7.	 Merkle, O. & Kubbe, I. Gender and corruption: What we’ve learned from 20 years of research (Part 1). ​h​t​t​p​s​:​​/​/​w​w​w​.​​u​4​.​n​o​/​​b​l​o​g​/​g​​e​

n​d​e​r​​-​a​n​d​-​c​​o​r​r​u​p​t​​i​o​n​-​p​a​​r​t​-​1​-​​w​h​a​t​-​w​​e​v​e​-​l​e​​a​r​n​e​d​-​​f​r​o​m​-​2​0​-​y​e​a​r​s​-​o​f​-​r​e​s​e​a​r​c​h (2023). Accessed on 02 Mar 2025.
	 8.	 Merkle, O. & Kubbe, I. Gender and corruption: What we’ve learned from 20 years of research (Part 2). ​h​t​t​p​s​:​​/​/​w​w​w​.​​u​4​.​n​o​/​​b​l​o​g​/​g​​e​

n​d​e​r​​-​a​n​d​-​c​​o​r​r​u​p​t​​i​o​n​-​p​a​​r​t​-​2​-​​c​h​a​r​t​i​​n​g​-​t​h​e​​-​c​o​u​r​s​​e​-​f​o​r​-​t​h​e​-​n​e​x​t​-​2​0​-​y​e​a​r​s (2023). Accessed on 02 Mar 2025.
	 9.	 Barnes, T. D. & Beaulieu, E. Introduction to the handbook on gender and corruption in democracies. In Handbook on Gender and 

Corruption in Democracies, chap. 1, 1–15 (eds Barnes, T. D. & Beaulieu, E.) (Edward Elgar Publishing, 2024). ​h​t​t​p​s​:​/​/​d​o​i​.​o​r​g​/​1​0​.​4​3​
3​7​/​9​7​8​1​8​0​3​9​2​3​2​4​6​.​0​0​0​0​6​​​​​.​​​

	10.	 Karim, S. Madame officer. Am. Q. 5, 42 (2011).
	11.	 Kahn, C. Mexican state’s anti-corruption plan: Hire female traffic cops. ​h​t​t​p​s​:​​/​/​w​w​w​.​​n​p​r​.​o​r​​g​/​2​0​1​3​​/​0​9​/​2​​8​/​2​2​6​9​​0​3​2​2​7​/​​m​e​x​i​c​a​​n​-​s​t​a​​t​

e​-​s​-​a​​n​t​i​-​c​o​​r​r​u​p​t​i​​o​n​-​p​l​​a​n​-​h​i​r​​e​-​w​o​m​e​​n​-​t​r​a​f​​f​i​c​-​c​o​p​s (2013). Accessed on 19 Sep 2024.
	12.	 Bauhr, M. & Charron, N. Will women executives reduce corruption? Marginalization and network inclusion. Comp. Political Stud. 

54, 1292–1322. https://doi.org/10.1177/0010414020970218 (2021).
	13.	 Esarey, J. & Schwindt-Bayer, L. A. Women’s representation, accountability and corruption in democracies. Br. J. Political Sci. 48, 

659–690. https://doi.org/10.1017/S0007123416000478 (2018).
	14.	 Ribeiro, H. V., Alves, L., Martins, A. F., Lenzi, E. K. & Perc, M. The dynamical structure of political corruption networks. J. Complex 

Netw. 6, 989–1003. https://doi.org/10.1093/comnet/cny002 (2018).
	15.	 Diviák, T., Dijkstra, J. K. & Snijders, T. A. Structure, multiplexity, and centrality in a corruption network: The Czech Rath affair. 

Trends Organ. Crime 22, 274–297. https://doi.org/10.1007/s12117-018-9334-y (2019).
	16.	 Luna-Pla, I. & Nicolás-Carlock, J. R. Corruption and complexity: A scientific framework for the analysis of corruption networks. 

Appl. Netw. Sci. 5, 13. https://doi.org/10.1007/s41109-020-00258-2 (2020).
	17.	 Granados, O. & Nicolás-Carlock, J. Corruption Networks: Concepts and Applications. Understanding Complex Systems (Springer, 

Berlin, 2021).
	18.	 Duijn, P. A., Kashirin, V. & Sloot, P. M. The relative ineffectiveness of criminal network disruption. Sci. Rep. 4, 4238. ​h​t​t​p​s​:​/​/​d​o​i​.​o​r​

g​/​1​0​.​1​0​3​8​/​s​r​e​p​0​4​2​3​8​​​​ (2014).
	19.	 da Cunha, B. R. & Gonçalves, S. Topology, robustness, and structural controllability of the Brazilian Federal Police criminal 

intelligence network. Appl. Netw. Sci. 3, 1–20. https://doi.org/10.1007/s41109-018-0092-1 (2018).
	20.	 Varese, F. The structure and the content of criminal connections: The Russian Mafia in Italy. Eur. Sociol. Rev. 29, 899–909. ​h​t​t​p​s​:​/​/​

d​o​i​.​o​r​g​/​1​0​.​1​0​9​3​/​e​s​r​/​j​c​s​0​6​7​​​​ (2013).
	21.	 Cavallaro, L. et al. Disrupting resilient criminal networks through data analysis: The case of Sicilian Mafia. PLoS ONE 15, e0236476. 

https://doi.org/10.1371/journal.pone.0236476 (2020).
	22.	 da Cunha, B. R. et al. Assessing police topological efficiency in a major sting operation on the dark web. Sci. Rep. 10, 73. ​h​t​t​p​s​:​/​/​d​

o​i​.​o​r​g​/​1​0​.​1​0​3​8​/​s​4​1​5​9​8​-​0​1​9​-​5​6​7​0​4​-​4​​​​ (2020).
	23.	 ElBahrawy, A. et al. Collective dynamics of dark web marketplaces. Sci. Rep. 10, 18827. ​h​t​t​p​s​:​/​/​d​o​i​.​o​r​g​/​1​0​.​1​0​3​8​/​s​4​1​5​9​8​-​0​2​0​-​7​4​4​1​

6​-​y​​​​ (2020).
	24.	 Bouchard, M. Collaboration and boundaries in organized crime: A network perspective. Crime Justice 49, 425–469. ​h​t​t​p​s​:​/​/​d​o​i​.​o​r​

g​/​1​0​.​1​0​8​6​/​7​0​8​4​3​5​​​​ (2020).
	25.	 Chiang, Y.-S., Chang, Y.-C. & Weng, W. To blend in or hide out? A network analysis on maritime criminal co-voyages in Taiwan. 

J. Quant. Criminol. 40, 373–393. https://doi.org/10.1007/s10940-023-09572-1 (2024).
	26.	 Smith, C. M. Exogenous shocks, the criminal elite, and increasing gender inequality in Chicago organized crime. Am. Sociol. Rev. 

85, 895–923. https://doi.org/10.1177/0003122420948510 (2020).
	27.	 Lopes, D. D. et al. Machine learning partners in criminal networks. Sci. Rep. 12, 15746. ​h​t​t​p​s​:​/​/​d​o​i​.​o​r​g​/​1​0​.​1​0​3​8​/​s​4​1​5​9​8​-​0​2​2​-​2​0​0​2​

5​-​w​​​​ (2022).
	28.	 Ribeiro, H. V. et al. Deep learning criminal networks. Chaos Solitons Fractals 172, 113579. ​h​t​t​p​s​:​/​/​d​o​i​.​o​r​g​/​1​0​.​1​0​1​6​/​j​.​c​h​a​o​s​.​2​0​2​3​.​1​1​

3​5​7​9​​​​ (2023).
	29.	 Toledo, A., Carpi, L. C., Atman, A. & Scarpelli, A. Multiplex key roles to disrupt criminal networks. Soc. Netw. Anal. Min. 13, 98. 

https://doi.org/10.1007/s13278-023-01101-z (2023).
	30.	 Toledo, A., Carpi, L. C., Atman, A. P. & Scarpelli, A. B. Outlier mining in criminal networks: The role of machine learning and 

outlier detection models. J. Comput. Soc. Sci. 8, 36. https://doi.org/10.1007/s42001-025-00364-0 (2025).
	31.	 Divakarmurthy, P., Requião da Cunha, B., Passold, J. F., Oliveira, M. & Menezes, R. Unravelling the dynamics of child sexual 

exploitation material circulation on the dark web. PLoS ONE 19, e0306516. https://doi.org/10.1371/journal.pone.0306516 (2024).
	32.	 Bao, L., Gangadharan, L. & Leister, C. M. Deterrence in networks. Games Econ. Behav. 150, 501–517. ​h​t​t​p​s​:​/​/​d​o​i​.​o​r​g​/​1​0​.​1​0​1​6​/​j​.​g​e​b​

.​2​0​2​5​.​0​2​.​0​0​1​​​​ (2025).
	33.	 Ganley, C. M., George, C. E., Cimpian, J. R. & Makowski, M. B. Gender equity in college majors: Looking beyond the STEM/non-STEM 

dichotomy for answers regarding female participation. Am. Educ. Res. J. 55, 453–487. https://doi.org/10.3102/0002831217740221 
(2018).

	34.	 Bao, L., Huang, D. & Lin, C. Can artificial intelligence improve gender equality? Evidence from a natural experiment. Manag. Sci. 
https://doi.org/10.1287/mnsc.2022.02787 (2025).

Scientific Reports |        (2025) 15:14201 10| https://doi.org/10.1038/s41598-025-98218-2

www.nature.com/scientificreports/

https://doi.org/10.1016/j.avb.2004.07.001
https://doi.org/10.1146/annurev-soc-071312-145605
https://doi.org/10.1016/S0304-3878(00)00123-1
https://doi.org/10.1016/S0304-3878(00)00123-1
https://doi.org/10.1016/S0167-2681(01)00169-X
https://doi.org/10.1111/j.1467-8586.2012.00450.x
https://www.u4.no/blog/gender-and-corruption-part-1-what-weve-learned-from-20-years-of-research
https://www.u4.no/blog/gender-and-corruption-part-1-what-weve-learned-from-20-years-of-research
https://www.u4.no/blog/gender-and-corruption-part-2-charting-the-course-for-the-next-20-years
https://www.u4.no/blog/gender-and-corruption-part-2-charting-the-course-for-the-next-20-years
https://doi.org/10.4337/9781803923246.00006
https://doi.org/10.4337/9781803923246.00006
https://www.npr.org/2013/09/28/226903227/mexican-state-s-anti-corruption-plan-hire-women-traffic-cops
https://www.npr.org/2013/09/28/226903227/mexican-state-s-anti-corruption-plan-hire-women-traffic-cops
https://doi.org/10.1177/0010414020970218
https://doi.org/10.1017/S0007123416000478
https://doi.org/10.1093/comnet/cny002
https://doi.org/10.1007/s12117-018-9334-y
https://doi.org/10.1007/s41109-020-00258-2
https://doi.org/10.1038/srep04238
https://doi.org/10.1038/srep04238
https://doi.org/10.1007/s41109-018-0092-1
https://doi.org/10.1093/esr/jcs067
https://doi.org/10.1093/esr/jcs067
https://doi.org/10.1371/journal.pone.0236476
https://doi.org/10.1038/s41598-019-56704-4
https://doi.org/10.1038/s41598-019-56704-4
https://doi.org/10.1038/s41598-020-74416-y
https://doi.org/10.1038/s41598-020-74416-y
https://doi.org/10.1086/708435
https://doi.org/10.1086/708435
https://doi.org/10.1007/s10940-023-09572-1
https://doi.org/10.1177/0003122420948510
https://doi.org/10.1038/s41598-022-20025-w
https://doi.org/10.1038/s41598-022-20025-w
https://doi.org/10.1016/j.chaos.2023.113579
https://doi.org/10.1016/j.chaos.2023.113579
https://doi.org/10.1007/s13278-023-01101-z
https://doi.org/10.1007/s42001-025-00364-0
https://doi.org/10.1371/journal.pone.0306516
https://doi.org/10.1016/j.geb.2025.02.001
https://doi.org/10.1016/j.geb.2025.02.001
https://doi.org/10.3102/0002831217740221
https://doi.org/10.1287/mnsc.2022.02787
http://www.nature.com/scientificreports


	35.	 Zeng, X. et al. Differences in collaboration patterns across discipline, career stage, and gender. PLoS Biol. 14, 1–19. ​h​t​t​p​s​:​/​/​d​o​i​.​o​r​g​
/​1​0​.​1​3​7​1​/​j​o​u​r​n​a​l​.​p​b​i​o​.​1​0​0​2​5​7​3​​​​ (2016).

	36.	 Huang, J., Gates, A. J., Sinatra, R. & Barabási, A.-L. Historical comparison of gender inequality in scientific careers across countries 
and disciplines. Proc. Natl. Acad. Sci. 117, 4609–4616. https://doi.org/10.1073/pnas.191422111 (2020).

	37.	 Stuhler, O. The gender agency gap in fiction writing (1850 to 2010). Proc. Natl. Acad. Sci. 121, e2319514121. ​h​t​t​p​s​:​/​/​d​o​i​.​o​r​g​/​1​0​.​1​0​
7​3​/​p​n​a​s​.​2​3​1​9​5​1​4​1​2​1​​​​ (2024).

	38.	 Bao, Z. & Huang, D. Reform scientific elections to improve gender equality. Nat. Hum. Behav. 6, 478–479. ​h​t​t​p​s​:​/​/​d​o​i​.​o​r​g​/​1​0​.​1​0​3​8​
/​s​4​1​5​6​2​-​0​2​2​-​0​1​3​2​2​-​w​​​​ (2022).

	39.	 Card, D., DellaVigna, S., Funk, P. & Iriberri, N. Gender gaps at the academies. Proc. Natl. Acad. Sci. 120, e2212421120. ​h​t​t​p​s​:​/​/​d​o​i​
.​o​r​g​/​1​0​.​1​0​7​3​/​p​n​a​s​.​2​2​1​2​4​2​1​1​2​0​​​​ (2023).

	40.	 Bao, Z. & Huang, D. Gender-specific favoritism in science. J. Econ. Behav. Organ. 221, 94–109. ​h​t​t​p​s​:​/​/​d​o​i​.​o​r​g​/​1​0​.​1​0​1​6​/​j​.​j​e​b​o​.​2​0​2​3​
.​0​7​.​0​1​1​​​​ (2024).

	41.	 Wagner, C., Garcia, D., Jadidi, M. & Strohmaier, M. It’s a man’s Wikipedia? Assessing gender inequality in an online encyclopedia. 
In Proceedings of the International AAAI Conference on Web and Social Media, Vol. 9, 454–463. ​h​t​t​p​s​:​/​/​d​o​i​.​o​r​g​/​1​0​.​1​6​0​9​/​i​c​w​s​m​.​v​9​i​
1​.​1​4​6​2​8​​​​ (2021).

	42.	 Martins, A. F. et al. Universality of political corruption networks. Sci. Rep. 12, 6858. https://doi.org/10.1038/s41598-022-10909-2 
(2022).

	43.	 Seo, G., Huang, W. & Han, S.-H.C. Conceptual review of underrepresentation of women in senior leadership positions from a 
perspective of gendered social status in the workplace: Implication for HRD research and practice. Hum. Resour. Dev. Rev. 16, 
35–59. https://doi.org/10.1177/1534484317690063 (2017).

	44.	 Reddy, S. & Jadhav, A. M. Gender diversity in boardrooms: A literature review. Cogent Econ. Finance 7, 1644703. ​h​t​t​p​s​:​/​/​d​o​i​.​o​r​g​/​1​
0​.​1​0​8​0​/​2​3​3​2​2​0​3​9​.​2​0​1​9​.​1​6​4​4​7​0​3​​​​ (2019).

	45.	 Piscopo, J. M. & Kenny, M. Rethinking the ambition gap: Gender and candidate emergence in comparative perspective. Eur. J. 
Politics Gend. 3, 3–10. https://doi.org/10.1332/251510819X15755447629661 (2020).

	46.	 Casos Aislados (2020). Accessed on 19 Sep 2024.
	47.	 Seidman, S. B. Network structure and minimum degree. Soc. Netw. 5, 269–287. https://doi.org/10.1016/0378-8733(83)90028-X 

(1983).
	48.	 Newman, M. Networks 2nd edn. (Orford University Press, 2018).
	49.	 Efron, B. & Tibshirani, R. An Introduction to the Bootstrap. Chapman & Hall/CRC Monographs on Statistics & Applied Probability 

(Taylor & Francis, 1994).
	50.	 Conover, W. Practical Nonparametric Statistics. Wiley Series in Probability and Statistics (Wiley, 1999).
	51.	 Tukey, J. Exploratory Data Analysis (Addison-Wesley, 1977).
	52.	 Ren, X.-L., Gleinig, N., Helbing, D. & Antulov-Fantulin, N. Generalized network dismantling. Proc. Natl. Acad. Sci. 116, 6554–

6559. https://doi.org/10.1073/pnas.1806108116 (2019).
	53.	 Mungiu-Pippidi, A. The time has come for evidence-based anticorruption. Nat. Hum. Behav. 1, 0011. ​h​t​t​p​s​:​/​/​d​o​i​.​o​r​g​/​1​0​.​1​0​3​8​/​s​4​1​5​

6​2​-​0​1​6​-​0​0​1​1​​​​ (2017).
	54.	 United Nations Office on Drugs and Crime. Annual report 2023. ​h​t​t​p​s​:​​/​/​w​w​w​.​​u​n​o​d​c​.​​o​r​g​/​d​o​​c​u​m​e​n​​t​s​/​A​n​n​​u​a​l​R​e​p​​o​r​t​/​U​N​​O​D​C​_​R​

E​P​O​R​T​_​2​0​2​3​-​W​E​B​.​p​d​f (2023). Accessed on 19 Sep 2024.
	55.	 Vespignani, A. Twenty years of network science. Nature 558, 528–529. https://doi.org/10.1038/d41586-018-05444-y (2018).
	56.	 Cardoso, M., Mendes, R. S., Souza, J. & Ribeiro, H. Gender difference in candidature processes for Brazilian elections. Physica A 

537, 122525. https://doi.org/10.1016/j.physa.2019.122525 (2020).
	57.	 Inter-Parliamentary Union and UN Women. Compare data on parliaments: Percentage of women. ​h​t​t​p​s​:​​​/​​/​d​a​t​​a​.​i​p​​u​.​o​​r​g​/​c​​o​m​p​a​​​r​​e​/​?​

f​i​​​e​l​d​=​c​u​​r​​r​e​n​t​​_​w​​o​m​e​n​_​p​e​r​c​e​n​t (2024). Accessed on 19 Sep 2024.
	58.	 Campana, P. & Varese, F. The determinants of group membership in organized crime in the UK: A network study. Glob. Crime 23, 

5–22. https://doi.org/10.1080/17440572.2022.2042261 (2022).
	59.	 Eggers, A. C., Vivyan, N. & Wagner, M. Corruption, accountability, and gender: Do female politicians face higher standards in 

public life?. J. Politics 80, 321–326. https://doi.org/10.1086/694649 (2018).
	60.	 Grund, T. U. & Densley, J. A. Ethnic heterogeneity in the activity and structure of a Black street gang. Eur. J. Criminol. 9, 388–406. 

https://doi.org/10.1177/1477370812447738 (2012).
	61.	 Warr, M. Organization and instigation in delinquent groups. Criminology 34, 11–37. ​h​t​t​p​s​:​/​/​d​o​i​.​o​r​g​/​1​0​.​1​1​1​1​/​j​.​1​7​4​5​-​9​1​2​5​.​1​9​9​6​.​t​b​0​

1​1​9​3​.​x​​​​ (1996).

Acknowledgements
We acknowledge the support of the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES—
PROCAD-SPCF Grant 88881.516220/2020-01), the Conselho Nacional de Desenvolvimento Científico e Tec-
nológico (CNPq—Grant 303533/2021-8), and Slovenian Research and Innovation Agency (Javna agencija za 
znanstvenoraziskovalno in inovacijsko dejavnost Republike Slovenije) (Grants P1-0403 and N1-0232).

Author contributions
A.A.B.P., A.F.M., M.V.P., S.G., C.M., M.P., and H.V.R. designed research, performed research, analyzed data, and 
wrote the paper.

Declarations

Competing interests
The authors declare no competing interests.

Additional information
Supplementary Information The online version contains supplementary material available at ​h​t​t​p​s​:​/​/​d​o​i​.​o​r​g​/​1​
0​.​1​0​3​8​/​s​4​1​5​9​8​-​0​2​5​-​9​8​2​1​8​-​2​​​​​.​​

Correspondence and requests for materials should be addressed to M.P. or H.V.R.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Scientific Reports |        (2025) 15:14201 11| https://doi.org/10.1038/s41598-025-98218-2

www.nature.com/scientificreports/

https://doi.org/10.1371/journal.pbio.1002573
https://doi.org/10.1371/journal.pbio.1002573
https://doi.org/10.1073/pnas.191422111
https://doi.org/10.1073/pnas.2319514121
https://doi.org/10.1073/pnas.2319514121
https://doi.org/10.1038/s41562-022-01322-w
https://doi.org/10.1038/s41562-022-01322-w
https://doi.org/10.1073/pnas.2212421120
https://doi.org/10.1073/pnas.2212421120
https://doi.org/10.1016/j.jebo.2023.07.011
https://doi.org/10.1016/j.jebo.2023.07.011
https://doi.org/10.1609/icwsm.v9i1.14628
https://doi.org/10.1609/icwsm.v9i1.14628
https://doi.org/10.1038/s41598-022-10909-2
https://doi.org/10.1177/1534484317690063
https://doi.org/10.1080/23322039.2019.1644703
https://doi.org/10.1080/23322039.2019.1644703
https://doi.org/10.1332/251510819X15755447629661
https://doi.org/10.1016/0378-8733(83)90028-X
https://doi.org/10.1073/pnas.1806108116
https://doi.org/10.1038/s41562-016-0011
https://doi.org/10.1038/s41562-016-0011
https://www.unodc.org/documents/AnnualReport/UNODC_REPORT_2023-WEB.pdf
https://www.unodc.org/documents/AnnualReport/UNODC_REPORT_2023-WEB.pdf
https://doi.org/10.1038/d41586-018-05444-y
https://doi.org/10.1016/j.physa.2019.122525
https://data.ipu.org/compare/?field=current_women_percent
https://data.ipu.org/compare/?field=current_women_percent
https://doi.org/10.1080/17440572.2022.2042261
https://doi.org/10.1086/694649
https://doi.org/10.1177/1477370812447738
https://doi.org/10.1111/j.1745-9125.1996.tb01193.x
https://doi.org/10.1111/j.1745-9125.1996.tb01193.x
https://doi.org/10.1038/s41598-025-98218-2
https://doi.org/10.1038/s41598-025-98218-2
http://www.nature.com/scientificreports


Open Access   This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 
4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in 
any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide 
a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have 
permission under this licence to share adapted material derived from this article or parts of it. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated 
otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence 
and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to 
obtain permission directly from the copyright holder. To view a copy of this licence, visit ​h​t​t​p​:​/​/​c​r​e​a​t​i​v​e​c​o​m​m​o​
n​s​.​o​r​g​/​l​i​c​e​n​s​e​s​/​b​y​-​n​c​-​n​d​/​4​.​0​/​​​​​.​​

© The Author(s) 2025 

Scientific Reports |        (2025) 15:14201 12| https://doi.org/10.1038/s41598-025-98218-2

www.nature.com/scientificreports/

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://www.nature.com/scientificreports

	﻿Structural roles and gender disparities in corruption networks
	﻿Results
	﻿Data
	﻿Gender prevalence
	﻿Network centrality
	﻿Network resilience
	﻿Collaboration patterns

	﻿Discussion and conclusions
	﻿Methods
	﻿References


